Determinación de los Límites de Atterberg con uso del penetrómetro cónico para la ciudad de Portoviejo
Determination of the Atterberg Limits using the cone penetrometer for the city of PortoviejoContenido principal del artículo
Los límites de Atterberg son parámetros fundamentales en la caracterización geotécnica de suelos finos. El método tradicional de Copa de Casagrande presenta alta variabilidad debido a la dependencia del operador, motivando la búsqueda de alternativas más confiables. El objetivo de este estudio fue evaluar la viabilidad y exactitud del método del penetrómetro cónico para la determinación de los límites de Atterberg en suelos representativos de la ciudad de Portoviejo, Ecuador. El enfoque del estudio es cuantitativo experimental, El tipo de estudio es correlacional comparativa. Se analizaron 15 muestras mediante ambos métodos y se establecieron correlaciones estadísticas. Los resultados mostraron que el método de Casagrande arroja valores de límite líquido entre 10 y 15 puntos porcentuales superiores al penetrómetro cónico, manteniendo una correlación significativa (R² = 0.71). Las conclusiones señalan que, el penetrómetro cónico demostró ser una alternativa confiable con menor variabilidad y mayor reproducibilidad para la determinación de límites de consistencia en suelos arcillosos de la región costera ecuatoriana.
Atterberg limits are fundamental parameters in the geotechnical characterization of fine-grained soils. The traditional Casagrande Cup method exhibits high variability due to operator dependence, prompting the search for more reliable alternatives. The objective of this study was to evaluate the feasibility and accuracy of the cone penetrometer method for determining Atterberg limits in representative soils from the city of Portoviejo, Ecuador. The study's approach is quantitative experimental. The type of study is comparative correlational. Fifteen samples were analyzed using both methods, and statistical correlations were established. The results showed that the Casagrande method yielded liquid limit values between 10 and 15 percentage points higher than the cone penetrometer, maintaining a significant correlation (R² = 0.71). The conclusions indicate that the cone penetrometer proved to be a reliable alternative with lower variability and greater reproducibility for determining consistency limits in clayey soils in the Ecuadorian coastal region.
Descargas
Detalles del artículo
American Society for Testing and Materials. (2023). ASTM D4318-22: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International. https://www.astm.org/d4318-22.html
American Society for Testing and Materials. (2017). ASTM D6913/D6913M-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International. https://www.astm.org/d6913_d6913m-17.html
Albuja-Sánchez, J. D. (2021). Determination of the undrained shear strength of organic soils using the cone penetration test and Marchetti’s flat dilatometer test. En T. Huszák, A. Mahler, y E. Koch (Eds.), Proceedings of the 6th International Conference on Geotechnical and Geophysical Site Characterization (pp. 528-537). ISSMGE. https://www.issmge.org/uploads/publications/25/111/ISC2020-528.pdf
British Standards Institution. (2022). BS 1377-2:2022: Methods of test for soils for civil engineering purposes. Classification tests. BSI Standards. https://www.bsigroup.com/en-GB/
Font, R. G. (2005). Atterberg limits and indices. In R. G. Font (Ed.), Encyclopedia of Earth Sciences Series (pp. 25–27). Springer. https://link.springer.com/rwe/10.1007/0-387-30842-3_4
Jagodnik, V., y Marušić, D. (2023). Determination of the Atterberg limits using a fall cone device on low plasticity silty sands. Rudarsko-Geološko-Naftni Zbornik, 38(3), 53-67. https://hrcak.srce.hr/ojs/index.php/rgn/article/view/26526
Karakan, E. (2023). Flow index-liquid limit relationship by fall-cone tests in clay-sand mixtures. Engineering Science and Technology, an International Journal, 42, 101481. https://doi.org/10.1016/j.jestch.2023.101481
Kumar, S., y Sharma, K. K. (2021). Influence of clay mineralogy on Atterberg limits and classification of fine-grained soils. Clay Minerals, 56(2), 112-125. https://doi.org/10.1180/clm.2021.18
Malki, M., Benaissa, A., y Nechnech, A. (2024). Liquid limit determination of medium to high plasticity Algerian soils using fall-cone vs Casagrande percussion cup methods. Acta Geotechnica et Geophysica, 59(1), 1-17. https://www.irsm.cas.cz/materialy/acta_content/2024_doi/Malki_AGG_2024_0001_0001.pdf
O’Kelly, B. C., Vardanega, P. J., y Haigh, S. K. (2022). Discussion of “Mohajerani method: Tool for determining the liquid limit of soils using fall cone test results with strong correlation with the Casagrande test”. Engineering Geology, 302, 106623. https://doi.org/10.1016/j.enggeo.2022.106623
Othman, M. M., Hen-Jones, R., Zapata, C., Jiménez, E., De Luca, F., Holcombe, E. A., y Vardanega, P. J. (2023). Geotechnical variability of the soils of Quito, Ecuador: A geodatabase study. Bulletin of Engineering Geology and the Environment, 82, 433-454. https://doi.org/10.1007/s10064-023-03438-3
Pin Ponce, J., y Ortiz Hernández, E. (2024). Estabilización de suelos arcillosos con el empleo de cal. Dominio de las Ciencias, 10(1), 771-789. https://doi.org/10.23857/dc.v10i1.3741
Shimobe, S., y Spagnoli, G. (2020). Fall cone tests considering water content, cone penetration index, and plasticity angle of fine-grained soils. Journal of Rock Mechanics and Geotechnical Engineering, 12(5), 1078-1087. https://doi.org/10.1016/j.jrmge.2020.02.005
Silva, M. F., Guimarães, L. J. N., y Azevedo, R. F. (2021). Correlation between Atterberg limits and undrained shear strength of tropical soils. Soils and Rocks, 44(2), e2021060820. https://doi.org/10.28927/SR.2021.060820
Ullah, A. (2024). Determination of liquid limit and plastic limit of clays using cone penetrometer [Tesis de maestría, Bangladesh University of Engineering and Technology]. BUET Institutional Repository. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/7175
Vardanega, P. J., Hickey, C. J., y Rezania, M. (2022). A modified geotechnical classification chart for fine-grained soils using fall-cone test results. Géotechnique Letters, 12(2), 124-131. https://doi.org/10.1680/jgele.21.00150
Velásquez-Chávez, P. D., y Véliz-Rivadeneira, J. M. (2024). Estabilización de suelo arcilloso con el empleo de cal y cemento para el mejoramiento de la subrasante. Revista InGeniar, 8(15), 136-148. https://doi.org/10.46296/ig.v8i15.0249
Zambrano-Rendón, V. A., Ortiz-Hernández, E. H., y Alcívar-Moreira, W. S. (2021). Caracterización geotécnica de los suelos de la ciudad de Calceta en la provincia de Manabí. Polo del Conocimiento, 6(8), 1018-1043. https://dialnet.unirioja.es/descarga/articulo/8042612.pdf
Zhou, Y., Wang, H., y Zhang, L. (2023). Automated Atterberg limits testing using a modified fall cone apparatus with digital image analysis. Geotechnical Testing Journal, 46(4), 891-907. https://doi.org/10.1520/GTJ20220145