La evolución del nanografeno en el sector de la construcción
The evolution of nanographene in the construction sectorContenido principal del artículo
La nanotecnología, un campo en constante evolución, ha abierto nuevas fronteras en diversos sectores, y la construcción no es la excepción. El objetivo es explicar la evolución del nanografeno en el sector de la construcción. El enfoque es cuantitativo, tipo descriptivo-explicativo con diseño experimental. Se realizó una búsqueda en las bases de datos Scopus, ScienceDirect y Scielo. Se utilizaron los descriptores “nanografeno”, “concreto” y “resistencia a la compresión". Los resultados demuestran que, una de sus propiedades mecánicas es la resistencia a la compresión, se puede decir que los porcentajes dl nanografeno que oscilan entre 0.02% - 0.04% con relación al peso del cemento se incrementa desde un 10% - 12%. En conclusión, la optimización de la dosificación del nanografeno es un punto clave para obtener los mejores resultados, ya que al dosificar de manera excesiva puede generar aglomeraciones del nanomaterial, lo que puede afectar negativamente las propiedades del concreto.
Nanotechnology, a constantly evolving field, has opened new frontiers in various sectors, and construction is no exception. The objective is to explain the evolution of nanographene in the construction sector. The approach is quantitative, descriptive-explanatory with experimental design. A search was carried out in the Scopus, ScienceDirect and Scielo databases. The descriptors “nanographene”, “concrete” and “compressive strength” were used. The results show that one of its mechanical properties is compressive strength, it can be said that the percentages of nanographene that range between 0.02% - 0.04% in relation to the weight of cement increase from 10% - 12%. In osajeión, the optimization of the osaje of nanographene is a key point to obtain the best results, since excessive dosing can generate agglomerations of the nanomaterial, which can negatively affect the properties of concrete.
Descargas
Detalles del artículo
An, JY., Lin, K., Zhu, L., Werling D., Dong, S., Brand, H, et.al (2018) Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. Dec 14;362(6420). https://lc.cx/Np042S
Chougan, M., Marotta, E., Lamastra, F., Vivio, F., Montesperelli, G., Ianniruberto, U y Bianco, A. (2019). A systematic study on EN-998-2 premixed mortars modified with graphene-based materials. Construction and Building Materials, 227, 116701. https://lc.cx/nT4V2P
Elcacho, J. (2013) La revolución del grafeno. (10/05/2013) Portada. https://bit.ly/4g9QVja
Farías, L., Flores, J., Rosales, L., Sáenz, A y López, L. (2017). Grafeno, el material del futuro. Ciencia Cierta, 1–7. https://lc.cx/aL1hJT
García, J. (2023). Grafeno: producción, caracterización y aplicaciones. 43(1), 59–80. https://lc.cx/dqYmiR
Guo, L., Wu, J y Wang, H. (2020). Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets. Construction and Building Materials, 240, 117926. https://lc.cx/Kp2Uuu
Ho, V., Ng, C., Ozbakkaloglu, T., Goodwin, A., McGuckin, C., Karunagaran, R y Losic, D. (2020). Influence of pristine graphene particle sizes on physicochemical, microstructural and mechanical properties of Portland cement mortars. Construction and Building Materials, 264, 120188. https://lc.cx/sAQPUq
Liu, C., Chen, F., Wu, Y., Zheng, Z., Yang, J., Yang, B., Yang, J., Hui, D y Luo, Y. (2021). Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials. Nanotechnology Reviews, 10(1), 1208–1235. https://lc.cx/J8Y27i
Liu, J., Fu, J., Yang, Y y Gu, C. (2019). Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Construction and Building Materials, 199, 1–11. https://lc.cx/xPloSw
Mowlaei, R., Lin, J., Basquiroto de Souza, F., Fouladi, A., Habibnejad, A., Shamsaei, E y Duan, W. (2021). The effects of graphene oxide-silica nanohybrids on the workability, hydration, and mechanical properties of Portland cement paste. Construction and Building Materials, 266, 121016. https://lc.cx/FpuryW
Muthu, M., Yang, E y Unluer, C. (2021). Effect of graphene oxide on the deterioration of cement pastes exposed to citric and sulfuric acids. Cement and Concrete Composites, 124(September), 104252. https://lc.cx/kWPjYB
Qureshi, T y Panesar, D. (2020). Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Composites Part B: Engineering, 197, 108063. https://lc.cx/_cBRqp
Sheng, K., Li, D y Yuan, X. (2021). Methyl orange assisted dispersion of graphene oxide in the alkaline environment for improving mechanical properties and fluidity of ordinary portland cement composites. Journal of Building Engineering, 43(August), 103166. https://lc.cx/hhy-H7
Ullah, M., Imtiazi, S., Khushnood, R., Pervaiz, E., Ahmed, W., Ullah, A y Qureshi, Z. (2021). Synthesis, characterization and application of graphene oxide in self consolidating cementitious systems. Construction and Building Materials, 296, 123623. https://lc.cx/Y9HktT
Zhao, L., Guo, X., Liu, Y., Zhao, Y., Chen, Z., Zhang, Y., Guo, L., Shu, X y Liu, J. (2018). Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Construction and Building Materials, 190, 150-163. https://lc.cx/02PZEq