Contenido principal del artículo

Juan Pedro Santos Fernández
Juan Luis Cordova Otero
Jaime Eduardo Centurión Goicochea
Rommel Eduardo Ulco Chavarria

La inteligencia artificial ha transformado significativamente la gestión comercial, ofreciendo nuevas soluciones a los retos tradicionales que enfrentan las empresas. El objetivo del estudio es analizar sistemáticamente las tendencias en el desarrollo de inteligencia artificial (IA) en la gestión comercial. Es de enfoque cualitativo, tipo descriptivo, diseño documental. Se analizaron 44 artículos publicados entre 2019 y 2024. Estados Unidos lidera con un 20% de la producción, seguido de China (18%) y Ecuador (9%). Los resultados revelan que, Python es el lenguaje de programación más utilizado, mencionado en 36 de los 38 artículos, mientras que R se menciona en 2. Las conclusiones señalar que, las áreas de Finanzas, Ventas y Marketing son las más investigadas, con un aumento significativo en la producción académica desde 2021, alcanzando su punto máximo en 2024, lo que destaca la creciente importancia de la IA para optimizar procesos comerciales y mejorar la toma de decisiones estratégicas en diversas áreas clave.

Artificial intelligence has significantly transformed business management, offering new solutions to traditional challenges faced by companies. The aim of the study is to systematically analyze trends in the development of artificial intelligence (AI) in business management. It is qualitative in approach, descriptive type, documentary design. 44 articles published between 2019 and 2024 were analyzed. The United States leads with 20% of the production, followed by China (18%) and Ecuador (9%). The results reveal that Python is the most used programming language, mentioned in 36 of the 38 articles, while R is mentioned in 2. The conclusions point out that the areas of Finance, Sales and Marketing are the most researched, with a significant increase in academic production since 2021, peaking in 2024, highlighting the growing importance of AI to optimize business processes and improve strategic decision-making in various key areas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Santos Fernández, J. P., Cordova Otero, J. L., Centurión Goicochea, J. E., & Ulco Chavarria, R. E. (2025). Tendencias en el desarrollo de inteligencia artificial en la gestión comercial: Una revisión sistemática. Revista Ingeniería, 9(23), 15–30. https://doi.org/10.33996/revistaingenieria.v9i23.129
Sección
ARTÍCULO ORIGINAL
Biografía del autor/a

Juan Pedro Santos Fernández, Universidad Nacional de Trujillo. Trujillo, Perú

Maestro en ingeniería industrial mención en producción, Universidad Nacional de Trujillo. Doctor en Ciencias e Ingeniería, Universidad Nacional de Trujillo. Docente principal a dedicación exclusiva de pregrado y posgrado de la Universidad Nacional de Trujillo en el área de Metodología de la Investigación Científica e Ingeniería de Software.

Juan Luis Cordova Otero, Universidad Nacional de Trujillo. Trujillo, Perú

Ingeniero de computación y sistemas. Maestro en administración y dirección de tecnologías de la información. Docente Auxiliar adscrito al departamento de ingeniería de sistemas, Universidad Nacional de Trujillo.

Jaime Eduardo Centurión Goicochea, Universidad Nacional de Trujillo. Trujillo, Perú

Estudiante de ingeniería de sistemas de X ciclo, Universidad Nacional de Trujillo.

Rommel Eduardo Ulco Chavarria, Universidad Nacional de Trujillo. Trujillo, Perú

Estudiante de ingeniería de sistemas de X ciclo, Universidad Nacional de Trujillo.

Bookmark and Share
Referencias

Bargoni A., Ferraris A., Vilamová Š y Hussain W (2024) Digitalisation and internationalisation in SMEs: a systematic review and research agenda. Journal of Enterprise Information Management. https://lc.cx/0lWyOs

Bertomeu, J. (2020) Machine learning improves accounting: discussion, implementation and research opportunities. Review of Accounting Studies, 25(3). 1135-1155, https://lc.cx/URvaSa

Cordero, B. (2021) Modelo de evaluación de crédito para capital de trabajo utilizando lenguaje Python aplicado a la banca pública: Caso de estudio en proyecto camaronero, Dialnet. https://lc.cx/UGVGpz

Cordero-Torres B. (2022) Algoritmos de Aprendizaje Supervisado para Proyección de Ventas de Camarón Ecuatoriano con Lenguaje de Programación Python. Economía y Negocios. 13(2). 30-51. https://lc.cx/dHa38u

Davenport, T. (2018). Artificial intelligence for the real world. Harvard Business Review Press. https://lc.cx/AgtsPM

Fedirko, O., Zatonatska, T., Wolowiec T y Skowron S. (2021) Data Science and marketing in E-Commerce amid COVID-19 Pandemic. European Research Studies Journal. XXIV(Special Issue 2). 3-16. https://lc.cx/7KrrsW

Hanechko, I y Oksana, T. (2019) Business Administration and Business Economics Marketing Accounting Personnel Economics – cefUP | Centro de Economia e Finanças da UP. https://lc.cx/X3ig3L

Hasan N. (2024) Addressing seasonality and trend detection in Predictive Sales Forecasting: A Machine Learning perspective. Journal of Business and Management Studies, 6(2), 100-109. https://lc.cx/o2gL31

International Conference on Smart Systems and Inventive Technology (ICSSIT) (2022) Computer-based simulation data model for employment of business management talents in colleges: Python implementations. IEEE Conference Publication. https://lc.cx/2KtWVU

Ivanova D., Foster A., Kleinegesse S., Gutmann M y Rainforth T. (2021) Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods. arXiv.org, https://lc.cx/RWp7Rf

Kaplan, A y Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations,1 and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://lc.cx/Y4O0dQ

Kasereka, H., (2020) Importance of web scraping in e-commerce and e-marketing. ResearchGate. https://lc.cx/rilSYq

Kayikci, Y., Demir, S., Mangla, S., Subramanian, N y Koc, B. (2022) Data-driven optimal dynamic pricing strategy for reducing perishable food waste at retailers. Journal of Cleaner Production. 344. 131068. https://lc.cx/ONxfq0

Kotler, P y Keller, K (2016). Marketing Management (15th ed.). Pearson Education. https://lc.cx/QF-oXK

Lang, S., Reggelin, T., Müller, M y Nahhas, A. (2021) Open-source discrete-event simulation software for applications in production and logistics: An alternative to commercial tools?. Procedia Computer Science. 180. 978-987. https://lc.cx/pAknJt

Lenort, R (2022) Selecting sustainability key performance indicators for smart logistics assessment. Acta Logistica, 9(4), 467-478. https://lc.cx/p64p2f

Li Y (2021) Investigation and probabilistic health risk assessment of trace elements in good sale lip cosmetics crawled by Python from Chinese e-commerce market. Journal of Hazardous Materials, 405. 124279. https://lc.cx/mp119o

Liu, J., Chang, H., Forrest, J y Yang, B. (2020) Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors. Technological Forecasting and Social Change. 158, 120142. https://lc.cx/f4gNbW

Messner, W. (2024) Exploring multilevel data with deep learning and XAI: The effect of personal-care advertising spending on subjective happiness. International Business Review. 33(1), 102203. https://lc.cx/Icp4Dk

Mytnyk, B., Tkachyk, O., Shakhovska, N., Fedushko, S. y Syerov, Y. (2023). Application of artificial intelligence for fraudulent banking operations recognition. Big Data and Cognitive Computing. 7(2), 93. https://lc.cx/jjEa2u

Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P y Lin Y. (2018) Big data analytics in supply chain management: A state-of-the-art literature review. Computers y Operations Research. 98, 254-264. https://lc.cx/PZ1ulo

Ping, Y., Buoye, A y Vakil, A. (2023), Enhanced review facilitation service for C2C support: machine learning approaches. Journal of Services Marketing, 37(5). 620-635. https://lc.cx/HC3aJ6

Rahim, M., Gururajan, G y Vishwesh, R (2021) Data Science for Marketing Analytics: A practical guide to forming a killer marketing strategy through data analysis with Python. https://lc.cx/mZF-HC

Reyero, R. (2024) La Inteligencia Artificial (IA) y su aplicación en Marketing. https://lc.cx/YOfznA

Roca, I. (2021), Propuesta de mejora enfocada en la productividad de la fuerza de ventas de una entidad bancaria mediante un modelo de optimización de la gestión comercial. https://lc.cx/yhMm-c

Russell, S y Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. https://lc.cx/WVxPZB

Shang, Y., Zhou, S., Zhuang, D., ?ywio?ek, J y Dincer, H. (2024) The impact of artificial intelligence application on enterprise environmental performance: Evidence from microenterprises. Gondwana Research. 131, 181-195. https://lc.cx/x9yViM

Symeonidis, S., Peikos, G y Arampatzis, A. (2022) Unsupervised consumer intention and sentiment mining from microblogging data as a business intelligence tool. Operational Research. 22(5). 6007-6036. https://lc.cx/ReYATi

Ting, T., Mia, M., Hossain, I y Wah, K (2024) Predicting the Financial Performance of Microfinance Institutions with Machine Learning Techniques ResearchGate. https://lc.cx/1nO2vD

Villagómez, J y Gómez, R. (2022) Análisis logístico de los puntos de carga y descarga de una compañía de transporte de la ciudad de Guayaquil utilizando las cadenas de Márkov con Python. Dialnet. https://lc.cx/IJNIRR

Vitali, S y Giuliani, M (2024) Emerging digital technologies and auditing firms: Opportunities and challenges. International Journal of Accounting Information Systems, 53. 100676. https://lc.cx/EKb-Ms

Wael, H., Abdallah, W., Ghura, H y Buallay, A. (2023) Factors influencing artificial intelligence adoption in the accounting profession: the case of public sector in Kuwait Competitiveness Review an International Business Journal Incorporating Journal of Global Competitiveness, 34(1), 3-27. https://lc.cx/iHJGVK

Wang, W., Hu, R., Zhang, C y Shen, Y. (2023) Impact of common institutional ownership on enterprise digital Transformation—Collaborative governance or collusion fraud? Heliyon, 9(11), e21641. https://lc.cx/htOI9x

Weiß T y Pfeiffer J. (2024) Consumer decisions in virtual commerce: Predict good help-timing based on cognitive load. Journal of Neuroscience Psychology and Economics, 17(2), 119-144. https://lc.cx/sdDDpM

Xu, C., Sun, G y Kong T. (2024) The impact of digital transformation on enterprise green innovation. International Review of Economics y Finance, 90. 1-12. https://lc.cx/8qIP99

Yadav, S., Banshiwal, N y Yadav P. (2024) Artificial Intelligence Integration in Social Media Marketing: A Comprehensive Analysis. ResearchGate, 2024. https://lc.cx/2oFvQX

Ying Y y Jin S. (2024) Artificial intelligence and green product innovation: Moderating effect of organizational capital. Heliyon, 10(7), e28572, 2024. https://lc.cx/HgkCKL

Ying Y., Cui X y Jin S. (2023) Artificial intelligence and green total Factor Productivity: The moderating effect of slack resources. Systems. 11(7), 356. https://lc.cx/GW9tld

Zaghloul, M., Barakat, S y Rezk, A (2024). Predicting E-commerce customer satisfaction: Traditional machine learning vs. deep learning approaches. Journal of Retailing and Consumer Services, 79, 103865. https://lc.cx/5xdYoF

Zhang K y Bu C. (2024) Top managers with information technology backgrounds and digital transformation: Evidence from small and medium companies. Economic Modelling, 132, 106629, 2024. https://lc.cx/lbY6VL