Tendencias en el desarrollo de inteligencia artificial en la gestión comercial: Una revisión sistemática
Trends in the development of artificial intelligence in business management: A systematic reviewContenido principal del artículo
La inteligencia artificial ha transformado significativamente la gestión comercial, ofreciendo nuevas soluciones a los retos tradicionales que enfrentan las empresas. El objetivo del estudio es analizar sistemáticamente las tendencias en el desarrollo de inteligencia artificial (IA) en la gestión comercial. Es de enfoque cualitativo, tipo descriptivo, diseño documental. Se analizaron 44 artículos publicados entre 2019 y 2024. Estados Unidos lidera con un 20% de la producción, seguido de China (18%) y Ecuador (9%). Los resultados revelan que, Python es el lenguaje de programación más utilizado, mencionado en 36 de los 38 artículos, mientras que R se menciona en 2. Las conclusiones señalar que, las áreas de Finanzas, Ventas y Marketing son las más investigadas, con un aumento significativo en la producción académica desde 2021, alcanzando su punto máximo en 2024, lo que destaca la creciente importancia de la IA para optimizar procesos comerciales y mejorar la toma de decisiones estratégicas en diversas áreas clave.
Artificial intelligence has significantly transformed business management, offering new solutions to traditional challenges faced by companies. The aim of the study is to systematically analyze trends in the development of artificial intelligence (AI) in business management. It is qualitative in approach, descriptive type, documentary design. 44 articles published between 2019 and 2024 were analyzed. The United States leads with 20% of the production, followed by China (18%) and Ecuador (9%). The results reveal that Python is the most used programming language, mentioned in 36 of the 38 articles, while R is mentioned in 2. The conclusions point out that the areas of Finance, Sales and Marketing are the most researched, with a significant increase in academic production since 2021, peaking in 2024, highlighting the growing importance of AI to optimize business processes and improve strategic decision-making in various key areas.
Descargas
Detalles del artículo
Bargoni A., Ferraris A., Vilamová Š y Hussain W (2024) Digitalisation and internationalisation in SMEs: a systematic review and research agenda. Journal of Enterprise Information Management. https://lc.cx/0lWyOs
Bertomeu, J. (2020) Machine learning improves accounting: discussion, implementation and research opportunities. Review of Accounting Studies, 25(3). 1135-1155, https://lc.cx/URvaSa
Cordero, B. (2021) Modelo de evaluación de crédito para capital de trabajo utilizando lenguaje Python aplicado a la banca pública: Caso de estudio en proyecto camaronero, Dialnet. https://lc.cx/UGVGpz
Cordero-Torres B. (2022) Algoritmos de Aprendizaje Supervisado para Proyección de Ventas de Camarón Ecuatoriano con Lenguaje de Programación Python. Economía y Negocios. 13(2). 30-51. https://lc.cx/dHa38u
Davenport, T. (2018). Artificial intelligence for the real world. Harvard Business Review Press. https://lc.cx/AgtsPM
Fedirko, O., Zatonatska, T., Wolowiec T y Skowron S. (2021) Data Science and marketing in E-Commerce amid COVID-19 Pandemic. European Research Studies Journal. XXIV(Special Issue 2). 3-16. https://lc.cx/7KrrsW
Hanechko, I y Oksana, T. (2019) Business Administration and Business Economics Marketing Accounting Personnel Economics – cefUP | Centro de Economia e Finanças da UP. https://lc.cx/X3ig3L
Hasan N. (2024) Addressing seasonality and trend detection in Predictive Sales Forecasting: A Machine Learning perspective. Journal of Business and Management Studies, 6(2), 100-109. https://lc.cx/o2gL31
International Conference on Smart Systems and Inventive Technology (ICSSIT) (2022) Computer-based simulation data model for employment of business management talents in colleges: Python implementations. IEEE Conference Publication. https://lc.cx/2KtWVU
Ivanova D., Foster A., Kleinegesse S., Gutmann M y Rainforth T. (2021) Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods. arXiv.org, https://lc.cx/RWp7Rf
Kaplan, A y Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations,1 and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://lc.cx/Y4O0dQ
Kasereka, H., (2020) Importance of web scraping in e-commerce and e-marketing. ResearchGate. https://lc.cx/rilSYq
Kayikci, Y., Demir, S., Mangla, S., Subramanian, N y Koc, B. (2022) Data-driven optimal dynamic pricing strategy for reducing perishable food waste at retailers. Journal of Cleaner Production. 344. 131068. https://lc.cx/ONxfq0
Kotler, P y Keller, K (2016). Marketing Management (15th ed.). Pearson Education. https://lc.cx/QF-oXK
Lang, S., Reggelin, T., Müller, M y Nahhas, A. (2021) Open-source discrete-event simulation software for applications in production and logistics: An alternative to commercial tools?. Procedia Computer Science. 180. 978-987. https://lc.cx/pAknJt
Lenort, R (2022) Selecting sustainability key performance indicators for smart logistics assessment. Acta Logistica, 9(4), 467-478. https://lc.cx/p64p2f
Li Y (2021) Investigation and probabilistic health risk assessment of trace elements in good sale lip cosmetics crawled by Python from Chinese e-commerce market. Journal of Hazardous Materials, 405. 124279. https://lc.cx/mp119o
Liu, J., Chang, H., Forrest, J y Yang, B. (2020) Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors. Technological Forecasting and Social Change. 158, 120142. https://lc.cx/f4gNbW
Messner, W. (2024) Exploring multilevel data with deep learning and XAI: The effect of personal-care advertising spending on subjective happiness. International Business Review. 33(1), 102203. https://lc.cx/Icp4Dk
Mytnyk, B., Tkachyk, O., Shakhovska, N., Fedushko, S. y Syerov, Y. (2023). Application of artificial intelligence for fraudulent banking operations recognition. Big Data and Cognitive Computing. 7(2), 93. https://lc.cx/jjEa2u
Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P y Lin Y. (2018) Big data analytics in supply chain management: A state-of-the-art literature review. Computers y Operations Research. 98, 254-264. https://lc.cx/PZ1ulo
Ping, Y., Buoye, A y Vakil, A. (2023), Enhanced review facilitation service for C2C support: machine learning approaches. Journal of Services Marketing, 37(5). 620-635. https://lc.cx/HC3aJ6
Rahim, M., Gururajan, G y Vishwesh, R (2021) Data Science for Marketing Analytics: A practical guide to forming a killer marketing strategy through data analysis with Python. https://lc.cx/mZF-HC
Reyero, R. (2024) La Inteligencia Artificial (IA) y su aplicación en Marketing. https://lc.cx/YOfznA
Roca, I. (2021), Propuesta de mejora enfocada en la productividad de la fuerza de ventas de una entidad bancaria mediante un modelo de optimización de la gestión comercial. https://lc.cx/yhMm-c
Russell, S y Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. https://lc.cx/WVxPZB
Shang, Y., Zhou, S., Zhuang, D., ?ywio?ek, J y Dincer, H. (2024) The impact of artificial intelligence application on enterprise environmental performance: Evidence from microenterprises. Gondwana Research. 131, 181-195. https://lc.cx/x9yViM
Symeonidis, S., Peikos, G y Arampatzis, A. (2022) Unsupervised consumer intention and sentiment mining from microblogging data as a business intelligence tool. Operational Research. 22(5). 6007-6036. https://lc.cx/ReYATi
Ting, T., Mia, M., Hossain, I y Wah, K (2024) Predicting the Financial Performance of Microfinance Institutions with Machine Learning Techniques ResearchGate. https://lc.cx/1nO2vD
Villagómez, J y Gómez, R. (2022) Análisis logístico de los puntos de carga y descarga de una compañía de transporte de la ciudad de Guayaquil utilizando las cadenas de Márkov con Python. Dialnet. https://lc.cx/IJNIRR
Vitali, S y Giuliani, M (2024) Emerging digital technologies and auditing firms: Opportunities and challenges. International Journal of Accounting Information Systems, 53. 100676. https://lc.cx/EKb-Ms
Wael, H., Abdallah, W., Ghura, H y Buallay, A. (2023) Factors influencing artificial intelligence adoption in the accounting profession: the case of public sector in Kuwait Competitiveness Review an International Business Journal Incorporating Journal of Global Competitiveness, 34(1), 3-27. https://lc.cx/iHJGVK
Wang, W., Hu, R., Zhang, C y Shen, Y. (2023) Impact of common institutional ownership on enterprise digital Transformation—Collaborative governance or collusion fraud? Heliyon, 9(11), e21641. https://lc.cx/htOI9x
Weiß T y Pfeiffer J. (2024) Consumer decisions in virtual commerce: Predict good help-timing based on cognitive load. Journal of Neuroscience Psychology and Economics, 17(2), 119-144. https://lc.cx/sdDDpM
Xu, C., Sun, G y Kong T. (2024) The impact of digital transformation on enterprise green innovation. International Review of Economics y Finance, 90. 1-12. https://lc.cx/8qIP99
Yadav, S., Banshiwal, N y Yadav P. (2024) Artificial Intelligence Integration in Social Media Marketing: A Comprehensive Analysis. ResearchGate, 2024. https://lc.cx/2oFvQX
Ying Y y Jin S. (2024) Artificial intelligence and green product innovation: Moderating effect of organizational capital. Heliyon, 10(7), e28572, 2024. https://lc.cx/HgkCKL
Ying Y., Cui X y Jin S. (2023) Artificial intelligence and green total Factor Productivity: The moderating effect of slack resources. Systems. 11(7), 356. https://lc.cx/GW9tld
Zaghloul, M., Barakat, S y Rezk, A (2024). Predicting E-commerce customer satisfaction: Traditional machine learning vs. deep learning approaches. Journal of Retailing and Consumer Services, 79, 103865. https://lc.cx/5xdYoF
Zhang K y Bu C. (2024) Top managers with information technology backgrounds and digital transformation: Evidence from small and medium companies. Economic Modelling, 132, 106629, 2024. https://lc.cx/lbY6VL