Aplicaciones del radón como trazador en la industria petrolera
Radon applications as a tracer in oil industryContenido principal del artículo
El radón es un elemento radiactivo, gaseoso, más denso que el aire, inodoro e insípido. Al ser producto del decaimiento radiactivo del uranio 238, debido a su asociación con la materia orgánica, está presente en forma natural en sistemas petrolíferos. De ahí que nos hayamos planteado como objetivo profundizar sobre la aplicabilidad del radón en las etapas de exploración y producción de la industria. El estudio constituye una investigación básica, en la que se realizó una revisión de literatura, para lo que empleó una investigación es cualitativa y se utilizó el método descriptivo-explicativo. La metodología empleada con enfoque inductivo que se nutrió principalmente de fuentes provenientes de plataformas académicas reconocidas, Science Direct, EBSCO, Cambridge CSA, One Petro, GeoScience Wolrd, entre otras y operadores boleanos: AND, OR y NOT. La revisión en bases de datos científicas, presenta las generalidades químicas y geoquímicas del 222Rn y muestra su utilidad como herramienta exploratoria de hidrocarburos desde superficie y como trazador de partición para la estimación de la saturación residual de crudos en producción, así como en caracterización de yacimientos y como soporte para la evaluación del progreso de proyectos de recuperación mejorada de hidrocarburos empleando vapor. Entre las ventajas en el empleo del radón resalta su presencia natural en el yacimiento, lo que evita el impacto ambiental, así como la sencillez y bajo costo de su determinación, potenciándolo como trazador natural en exploración y producción.
Radon is a radioactive, gaseous element, denser than air, odorless and tasteless. Being a product of the radioactive decay of uranium 238, due to its association with organic matter, it is naturally present in petroleum systems. Hence, we have set ourselves the objective of delving deeper into the applicability of radon in the exploration and production stages of the industry. The study constitutes a basic investigation, in which a literature review was carried out, for which qualitative research was used and the descriptive-explanatory method was used. The methodology used with an inductive approach was mainly drawn from sources from recognized academic platforms, Science Direct, EBSCO, Cambridge CSA, One Petro, GeoScience World, among others, and Boolean operators: AND, OR and NOT. The review in scientific databases presents the chemical and geochemical generalities of 222Rn and shows its usefulness as an exploratory tool for hydrocarbons from the surface and as a partition tracer for the estimation of the residual saturation of crude oil in production, as well as in reservoir characterization and as support for the evaluation of the progress of enhanced hydrocarbon recovery projects using steam. Among the advantages in the use of radon, its natural presence in the deposit stands out, which avoids environmental impact, as well as the simplicity and low cost of its determination, enhancing it as a natural tracer in exploration and production.
Descargas
Detalles del artículo
Abdou, M., Carnegie, A., Mathews, S. G., McCarthy, K., O’Keefe, M., Raghuraman, B., y Xian, C. (2011). Finding value in formation water. Oilfield Review, 23(1), 24-35. https://api.semanticscholar.org/CorpusID:7570225
Anisimov, L. A., Kilyakov, V. N., y Vorontsova, I. V. (2009). The use of tracers for reservoir characterization. In SPE Middle East Oil and Gas Show and Conference (pp. SPE-118862). SPE. https://doi.org/10.2118/118862-MS
Bailey, B., Crabtree, M., Tyrie, J., Elphick, J., Kuchuk, F., Romano, C., y Roodhart, L. (2000). Control del agua. Oilfield Review, 12(1), 32-53. https://www.researchgate.net/publication/271074683_The_Challenge_of_Water_Control
Barragán, R. J. (2019). Vulnerabilidad de los cultivos de ciclos transitorios al sur de Quevedo frente al cambio climático, 2018. https://repositorio.uteq.edu.ec/handle/43000/3746
Baskaran, M. (2016). Radon: A tracer for geological, geophysical and geochemical studies. Basel: Springer. https://doi.org/10.1007/978-3-319-21329-3
Clever H., (1979) Solubility data series, volume 2: Krypton, Xenon and Radon, gas solubilities. Pergamon Press, 2; 357. https://srdata.nist.gov/solubility/IUPAC/SDS-2/SDS-2.pdf
Cook, P. G., Favreau, G., Dighton, J. C., y Tickell, S. (2003). Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, 277(1); 74-88. https://doi.org/10.1016/S0022-1694(03)00087-8
Fan, K., Kuo, T., Han, Y., Chen, C., Lin, C., y Lee, C. (2007). Radon distribution in a gasoline-contaminated aquifer. Radiation measurements, 42(3); 479-485. https://doi.org/10.1016/j.radmeas.2006.12.012
Folger, P. F., Poeter, E., Wanty, R. B., Frishman, D., y Day, W. (1996). Controls on 222Rn variations in a fractured crystalline rock aquifer evaluated using aquifer tests and geophysical logging. Groundwater, 34(2); 250-261. https://doi.org/10.1111/j.1745-6584.1996.tb01885.x
Geiger, J., Jakab, N., Csökmei, B., Horváth, Z., y Gellért, B. (2016). Statistical and geostatistical study of Rn and hydrocarbon components of a soil gas monitoring system: an application to surface hydrocarbon exploration. Geologia Croatica, 69(2); 255-268. https://doi.org/10.4154/gc.2016.21
Grolander, S. (2009). Radon as a groundwater tracer in Forsmark and Laxemar (No. SKB-R--09-47). Swedish Nuclear Fuel and Waste Management Co. https://inis.iaea.org/search/search.aspx?orig_q=RN:41038315
Guerrero-Useda, M. E. (2021). Contaminación físico química en zonas de fracking. Revista Politécnica, 17(34); 70-81. https://doi.org/10.33571/rpolitec.v17n34a5
Hoehn, E., Von Gunten, H. R., Stauffer, F., y Dracos, T. (1992). Radon-222 as a groundwater tracer. A laboratory study. Environmental science & technology, 26(4), 734-738. https://doi.org/10.1021/es00028a010
Höhener, P., y Surbeck, H. (2004). Radon?222 as a tracer for nonaqueous phase liquid in the vadose zone: Experiments and analytical model. Vadose Zone Journal, 3(4); 1276-1285. https://doi.org/10.2136/vzj2004.1276
Hunkeler, D., Hoehn, E., Höhener, P., y Zeyer, J. (1997). 222Rn as a partitioning tracer to detect diesel fuel contamination in aquifers: laboratory study and field observations. Environmental science & technology, 31(11); 3180-3187.https://doi.org/10.1021/es970163w
Khattak, N. U., Khan, M. A., Ali, N., y Abbas, S. M. (2011). Radon Monitoring for geological exploration: A review. Journal of Himalayan Earth Sciences, 44(2); 91-102. http://nceg.uop.edu.pk/GeologicalBulletin/Vol-44(2)-2011/Vol-44(2)-2011-Paper11.pdf
Mata, F. D., Almenares-Reyes, R. S., y Otaño-Noguel, J. A. (2020). Caracterización preliminar de las pizarras del depósito Tchihingue (Angola) con fines de uso como roca industrial. Minería y Geología, 36(3); 253-267. http://scielo.sld.cu/pdf/mg/v36n3/1993-8012-mg-36-03-253.pdf
Molerio, L. F. (2012). Hidrología de Trazadores en la gestión ambiental de yacimientos de petróleo onshore. https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=3387&context=kip_articles
Molerio, L. F., Vigil-Escalera, V., y Balado, E. J. (2014). Desarrollo gasopetrolífero y gestión de los recursos hidráulicos subterráneos en el área cársica protegida de Punta Guanos, Matanzas, Cuba. Gota a Gota, 6 (1), 10-20. http://www.redciencia.cu/geobiblio/paper/2014_Morelios%20etal_Desarrollo%20petrolero%20y%20carso%20matanzas.pdf
O´Sullivan, T. (2015) In-Situ Evaluation of Vapor Properties Using Condensed Vapor Gamma. Petrophysics, 56(4), 334-345. https://www.researchgate.net/publication/281685563_In_situ_vapor_evaluation_of_vapor_properties_using_condensed_vapor_gamma
O'Sullivan, T. P. (2008). High Gamma Radiation in Heavy-Oil Steam Zones: A Condensation-Induced Effect. In SPWLA Annual Logging Symposium (pp. SPWLA-2008). SPWLA. https://onepetro.org/SPWLAALS/proceedings-abstract/SPWLA08/All-SPWLA08/27729
Palacios, D., Fusella, E., Avila, Y., Salas, J., Teixeira, D., Fernández, G., y Regalado, J. (2016). Soil gas radon and thoron measurements in some Venezuelan oilfields. Journal of Radioanalytical and Nuclear Chemistry, 307, 801-810. https://doi.org/10.1007/s10967-015-4354-4
Paulo, J. M. D., Moreira, R. M., y Rocha, Z. (2007). Determination of partition coefficient of radiotracer {sup 222} Rn. https://www.osti.gov/etdeweb/biblio/21074694
PDVSA (2016). Informe de Gestión Social Ambiental. http://www.pdvsa.com/images/pdf/Balance_Social_Ambiental/BGSA_2016.pdf
Ponte-Sucre, A. (2017). La energía nuclear en nuestro día a día. Tribuna del Investigador, 18(2). file:///C:/Users/Danis/Downloads/15051-Texto%20del%20art%C3%ADculo-144814482099-1-10-20180526.pdf
Puigdomenech, I., y Bruno, J. (1988). Modelling uranium solubilities in aqueous solutions: Validation of a thermodynamic data base for the EQ3/6 geochemical codes (No. SKB-TR--88-21). Swedish Nuclear Fuel and Waste Management Co. https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/040/20040448.pdf?r=1
Schumann, R. R., y Gundersen, L. C. (1996). Geologic and climatic controls on the radon emanation coefficient. Environment International, 22 (1); 439-446. https://doi.org/10.1016/S0160-4120(96)00144-4
Sobolev, I. S. (2007). Radio-geochemical methods at surface expiotation of oil and gas fields. Bulletin of the Tomsk Polytechnic University, 311(1); 85-90. https://earchive.tpu.ru/handle/11683/982
Soerens, T. S., Ghanem, A., Smith, J., y MA, M. (1999, August). Characterizing DNAPL in Ground Water Using Partitioning Fluorescent Dyes. In Water Resources into the New Millennium: Past Accomplishments and New Challenges. Proceedings of International Water Resources Engineering Conference, ASCE Specialty Conference. https://www.academia.edu/download/37920412/Soerens_Seattle_tracer.pdf
Spirakis, C. S. (1996). The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11(1-3), 53-69. https://doi.org/10.1016/0169-1368(95)00015-1
Zielinski, R. A., y Meier, A. L. (1988). The association of uranium with organic matter in Holocene peat: an experimental leaching study. Applied geochemistry, 3(6), 631-643. https://doi.org/10.1016/0883-2927(88)90095-9